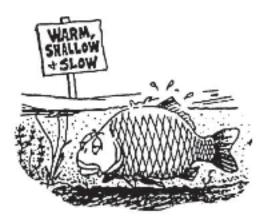

# **Temperature:**


# Its Role in Aquatic Habitats



### **Volunteer Monitoring Factsheet Series**

2023





## Why are we concerned?

- Temperature changes can affect all aquatic life.
   For example, warm water holds less dissolved oxygen than cold water and triggers higher plant growth and respiration rates. The lowered oxygen levels of warmer waters are further reduced when plants and animals die and decay.
- Although most aquatic life has adapted to 10 min. survive within a range of water temperatures, some fish species, (trout, for example) require cooler waters. The metabolic rate of organisms, or the rate at which they convert food into energy, also increases with higher water temperatures, resulting in even greater demands on oxygen.

### Time Needed: Equipment Needed:

10 minutes

- Hipboots
- Thermometer
- Form to record data



- Pen/pencil
- Waterproof gloves (optional)
- Clear plastic cup (optional)

#### When to Measure:

Check with your local coordinator for schedules

• Research also shows that extreme temperature fluctuations can make fish and insects more susceptible to disease, parasites and the harmful effects of toxic waste.

### **Temperature Conversion Chart**

| Fahrenheit | 33   | 34   | 35   | 36   | 37   | 38   | 39   | 40   | 41   | 42   | 43   | 44   | 45   | 46   | 47   | 48   | 49   | 50   | 51   |
|------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Celsius    | .6   | 1.1  | 1.7  | 2.2  | 2.8  | 3.3  | 3.9  | 4.4  | 5    | 5.6  | 6.1  | 6.7  | 7.2  | 7.8  | 8.3  | 8.9  | 9.4  | 10   | 10.6 |
| Fahrenheit | 52   | 53   | 54   | 55   | 56   | 57   | 58   | 59   | 60   | 61   | 62   | 63   | 64   | 65   | 66   | 67   | 68   | 69   | 70   |
| Celsius    | 11.1 | 11.7 | 12.2 | 12.8 | 13.3 | 13.9 | 14.4 | 15   | 15.6 | 16.1 | 16.7 | 17.2 | 17.8 | 18.3 | 18.9 | 19.4 | 20   | 20.6 | 21.1 |
| Fahrenheit | 71   | 72   | 73   | 74   | 75   | 76   | 77   | 78   | 79   | 80   | 81   | 82   | 83   | 84   | 85   | 86   | 87   | 88   | 89   |
| Celsius    | 21.7 | 22.2 | 22.8 | 23.3 | 23.9 | 24.4 | 25   | 25.6 | 26.1 | 26.7 | 27.2 | 27.8 | 28.3 | 28.9 | 29.4 | 30   | 30.6 | 31.1 | 31.7 |

### **Background on Temperature**

Stable water temperature is a critical factor in maintaining the health of a stream and its inhabitants. Temperatures over 78° F, (25.6° C) for example, are usually fatal to brook trout, which need

waters in the range of 55°-65° F (12.8°-18.3° C) in order to thrive. Other fish such as the smallmouth bass can survive an upper limit of 86° F (30° C) and carp can live in even warmer waters. So as temperature increases, cool water species will gradually be replaced by warm water ones.

One of the most drastic ways that stream temperature is increased is

by thermal pollution. Thermal pollution occurs when warm water is added to the stream. Industries such as power plants, paper mills and cheese factories may discharge heated water used in the manufacturing process into the streams. Runoff, in a more indirect

way, can also add warm water to streams. Rainwater running off warmed surfaces, especially parking lots, roof tops and roads, increases stream temperatures.

Mill ponds and impoundments also increase water temperature because they contain a large surface area of slow-moving water which is warmed by the sun, affecting water temperature downstream.

Removing all overhanging trees that shade and cool the stream can also negatively impact stream temperatures. Another factor contributing to higher stream

temperatures is eroding soil. Turbid water that results from eroded soil heats up quickly because the suspended sediments absorb the sun's radiant heat. Sediment also makes stream channels shallow. A shallow stream warms up faster than deep waters.

# Think Like a Scientist!

Follow the directions
VERY CAREFULLY!
Accuracy is a must
for yalid data

## **Collecting the Sample**

- To insure consistency in a long-term monitoring effort, the sampling location should be marked in some way. You can tie a piece of surveyor's tape to a tree or drive in a stake above the highest water line. Make sure you have any necessary permission before you mark a site. Record the air temperature before you take the stream temperature.
- 2. Test in the middle of the stream where the water is moving, not in pools or backwater areas.
- 3. You can use a standard alcohol thermometer for the measurement. Lower the thermometer about four inches below the surface, as close as possible to the middle of the stream.
- 4. Leave the thermometer immersed until the reading has stabilized. This usually takes about two minutes. Try to take the reading with the base of the thermometer still immersed. You can fill a clear plastic cup with water and raise it to eye level to read the temperature. Record your measurement. If you measured in degrees F, use the chart on the front to convert and record your measurement in degrees C.





©2010 University of Wisconsin. DNR PUB WT-755. This publication is part of a seven-series set, "Water Action Volunteers- Volunteer Monitoring Factsheet Series" and is available from the Water Action Volunteers Coordinator at 608/264-8948.

Water Action Volunteers is a cooperative program between the University of Wisconsin-Madison Division of Extension and the Wisconsin Department of Natural Resources. For more information, go to <a href="https://wateractionvolunteers.org/">https://wateractionvolunteers.org/</a>